
 
Website: ijetms.in Issue:1, Volume No.2, January 2018 

 

39 
 

Mixing of Centralized and Decentralized Methods Using 
Demand Driven Load Collection in Dynamic Load 

Balancing Algorithm in Cluster System 

Dr. Sharada Santosh Patil 

1Associate Professor MCA, Deptt. SIBAR Kondhwa, Pune, Maharashtra, INDIA 

Email address: 
sharada_jadhao@yahoo.com(S. S. Patil) 

 
Abstract: The load balancing algorithm distributing homogeneous load among the cluster hence increases the speed of 

high performance clustered system due to its parallel computation capabilities because of its compute nodes. The most 

attractive point of load balancing algorithm is to distribute load of heavily loaded compute node among lightly loaded 

compute nodes during the execution, which is called as process migration. This process migration time can be saved using 

new method in this algorithm. Hence some policies are needed to consider at the time of load transfer decision as well as at 

the time of process migration. The construction of dynamic load balancing algorithm requires MPI instructions to achieve 

needs parallel programming. The parallel programming on the cluster can be execute using massage passing interface 

(MPI) or application programming interface (API). This paper uses only MPI library to build new load balancing algorithm. 

Due to very highly variable workload of a cluster system, the difficulty of  load balancing is also increasing across its 

compute  nodes. This paper proposes new approach of existing dynamic load balancing algorithm, which is implemented 

on Rock cluster and maximum time it gives the better performance. This algorithm uses demand driven load collection 

methods so its speed is increases.  This paper focused and on comparison between previous dynamic load balancing 

algorithm and also gives performance of  new dynamic load balancing algorithm. 

Keywords: Concurrent Programming, MPI Library, HPC Clusters, DLBA ,ARPLCLB, ARPLCPELB, ARDLCLB 

,LDOP,PM ,  PMDL 

 

1. Introduction 

Parallel CPUs are connected on mother board called as 

HPC cluster, which speed performance can be increased by 

splitting a computational task across various nodes in the 

cluster, which are most commonly used in scientific 

parallel computing. Generally such clusters executes 

custom programs. These custom programs have been 

designed to take advantage of the concurrent programming 

available on HPC clusters. The parallel programming 

environment can provided through Message passing 

interface i.e. MPI library  (Michel Daydé, Jack Dongarra 

[2005]) [21] (G. Bums and R. Daoud, MPI Cubix - 

[1994]) [22] 

Most of the HPC clusters consist of server and nodes.  

The server is accountable for distribution of the internet 

services to all other nodes. (Michel Daydé, Jack 

Dongarra – [2005]) [21] 

Every load balancing algorithm has very well known 

objective is to speed up computer system and to increase 

super computing power within the clustered system. This 

load balancing algorithms can be divided in to two main 

types – static load balancing and dynamic load balancing. 

(Paul Werstein, Hailing Situ and Zhiyi Huang [2006]) 

[9]. 

The Static load balancing algorithms are always 

centralized and run on central CPU rather than 

decentralized approach, hence only centralized node in 

responsible for decision of load balancing. Where as  

dynamic load balancing algorithm distributes workload 

among the processors at run time. The information 

exchange policies are periodic policy or demand driven 

policy or state change driven policy, (Parimah 

Mohammadpour, Mohsen Sharifi, Ali Paikan-2008 ) [8]. 

There are three main sources of load imbalance, they are 

application imbalance, workload imbalance and 

heterogeneity of hardware resources.   (Yongzhi Zhu Jing 

Guo Yanling Wang [2009])[20] (Marta Beltr´an and 

Antonio Guzm´an [2008]) [7] 

Load balancing in the application level thinks on 

reducing the turn  around time or completion time of an 

application where as load balancing in the system level is 

thinks on  maximizing the throughput or utilization rate of 

the nodes. (Bernd F reisleben Dieter Hartmann Thilo 

Kielmann [1997])[1] 

These load balancing schemes can centralized or  

decentralized. When only central node collects the 

information of each node and performs the decision making 

based on overall knowledge of the system is called 

mailto:Sharada_jadhao@yahoo.com


 
Website: ijetms.in Issue:1, Volume No.2, January 2018 

 

40 
 

centralized load balancing. When all  the nodes are taking 

the decision of load balancing based on its local knowledge 

then it is called as  distributed load balancing scheme.  

(Parimah Mohammadpour, Mohsen Sharifi, Ali Paikan-

2008)(Janhavi B, Sunil Surve ,Sapna Prabhu-2010) 

[8][5] 

The load balancing algorithm can be supports non pre-

emptive and pre-emptive. 

When only new processes means new born processes 

,(they are not started their execution yet) only are transfer 

from highly loaded processor to lightly loaded processor 

such a scheme is adopted in non pre-emptive load 

balancing scheme.  

When any process may be running processes also , are 

transfer from highly loaded processor to lightly loaded 

processor such a scheme is adapted by pre-emptive load 

balancing scheme. [17] (Sun Nian, Liang Guangmin 

[2010])[19](Yanyong Zhang, Anand Sivasubramaniam, 

JoseÂ Moreira, and Hubertus Franke 

[2001])[20](Yongzhi Zhu Jing Guo Yanling Wang 

[2009]). 

The researcher from academia and industries has 

designed portable message-passing system designed to 

function on a wide variety of parallel computers. It consists 

of the standard defines the syntax and semantics of a core 

of library functions useful to a large size of users writing 

portable message-passing programs in Fortran 77 or the C 

programming language. According to R. Butler and E. 

Lusk P4 [2] is a concurrent programming library,which 

consisting both message passing and shared-memory 

components, portable to a parallel processing 

environments. Chameleon Written by W.D. Gropp and B. 

Smith [3](Erik D. Demaine, Ian Foster,Carl Kesselman, 

and Marc Snir [2001])[4]( Hau Yee Sit Kei Shiu Ho 

Hong Va Leong Robert W. P.Luk Lai Kuen Ho 

[2004])[18] (William Gropp, Rusty Lusk, Rob Ross, and 

Rajiv Thakur [2005]) 

 

2. ARPLCLB and ARPLCPELB 

Algorithms 

Load collection policy of these two dynamic load 

balancing algorithm is periodically load collection 

approach. The main   disadvantage of these algorithms is 

maximum time of the central processor is wasted in load 

balancing rather than process execution. Hence 

performance of the server decreases. These algorithms also 

having a decentralized load balancing algorithm, so  

decision of load distribution is taken by all the node hence, 

each node has load of other nodes and communication 

overhead increases tremendously. (Janhavi B, Sunil 

Surve, Sapna Prabhu-2010) [5] 

The new idea of load balancing, order to balance the load 

uniformly over a cluster system, one has to choose a mix of 

centralized and decentralized approach. (Janhavi B, Sunil 

Surve, Sapna Prabhu-2010) [5] 

The ARPLCLB and ARPLCPELB algorithms mix two 

approaches - centralized and decentralized. According to 

these algorithms, the authority packet is circulated 

circularly between the CPU nodes as well as periodically 

each CPU is broad casting their nodes to all other nodes. 

Each node is collecting load information and analyze  

about the system whether it is balanced or imbalanced. 

Authority packet can assign authority to CPU to take 

decision of load balancing. The moment on which system is 

completely imbalanced, any lowly loaded processor can 

pick up this authority packet and get authority to become 

master node. Master node is responsible to balance the 

system. Hence the name of this algorithm is Authority Ring 

Periodically Load Collection for Load Balancing Algorithm 

in short it is (ARPLCLB)  (Sharada Santosh Patil, Arpita 

N.Gopal. ) [23] , (Sharada Santosh Patil, Arpita 

N.Gopal. ) [24]  

 

3. The Idea of New Research 

The centralized load balancing approach is mixed with 

decentralized load balancing approach in Authority Ring 

Periodically Load Collection for load balancing algorithm 

(ARPLCLB) but it many a times it shows poor result. 

(Sharada Santosh Patil, Arpita N. Gopal. -2013)[23] 

The major disadvantages of Authority Ring Periodically 

Load Collection with past experience algorithm 

(ARPLCPE) are given below. 

1. Too much communication overhead due to 

periodically load collection policy. 

2. Master node always gives order and the other has 

to follow it without any logic. 

3. Process migration is still high. 

4. Migrated processes are again selected for 

migration. 

5. Too much communication overhead due to 

periodic load collection. 

These above mentioned disadvantages are very serious, 

the major reason behind these disadvantages are periodic 

load collection method , hence there is urgent need to 

change load collection policy which can improve above 

algorithm. So that new dynamic load balancing algorithm 

need to use demand driven load collection policy. The most 

suitable name of this algorithm is Authority Ring with 

demand load collection for load balancing Algorithm 

(ARDLCLB) which discussed in next section. 

 

 4. The ARDLCLB Algorithm: 



 
Website: ijetms.in Issue:1, Volume No.2, January 2018 

 

41 
 

This algorithm does not collect a load periodically using all 

to all logic. It uses demand driven techniques with all to 

one technique, hence it saves too much communication 

overhead. This algorithm also uses decentralized activity at 

the time of process migration. This section explains the 

overall procedure, different  policies used in the algorithm, 

Data structures used to build algorithm, and parallel 

algorithm. 

 
4.1. Overall Procedure 

The Overall Procedure of this algorithm is given below; 

Step 1: When the system is imbalanced then old master 

is changed to the new master and according to his 

demand every processor are passing or broadcast 

information packet to all processors which consists of: 

1. Current status of the node 

2. Current load of the node with load factor 

3. Information about all the processes with their 

types (CPU bound,IO bound, Memory bound). 

4. Past experience of the processes. 

Step 2: Every processor has to maintain the current 

information as well as past information of all the 

processor with nature of instructions (CPU bound 

instruction or IO bound instructions ) of that process.  

Step 3: Every processor can pick up authority packet and 

maintain the current load information in the authority 

packet and circulate it to next processor.  

Step 4: It checks if system is imbalanced if so and any 

idle node or lightly loaded node get authority packet then 

immediately it performs following activities: 

1. Collects information of processors using load 

packets 

2. It selects processes for migration from heavy loaded 

processor using following process criteria: 

a. It chooses newly arrived processes. (i.e. new born 

processes) 

b. It chooses processes which needs 80 % time for 

execution. This time can be calculated by past experience 

of the processes as well as nature of instructions used in 

that processes. 

3. Create workload distribution table . and also creates 

order packets according to workload distribution 

table. 

4. Send order packet of all nodes to that appropriate 

node. 

5. After load distribution, it perform process migration. 

Step 5: As soon as any node gets order packet they 

should follow the order of order packet and performs 

process migration. 

Step 6: After the load balancing operation is over again 

master node starts authority ring using circulating of 

authority packet to each node of the cluster. 

Step 7: Continue and Repeats Steps 1 to 7 till cluster is 

not shut down 

 

5. Policies Used in ARDLCLB 

Algorithm 
The required policies used in proposed dynamic load 

balancing algorithm are explained below. 

5.1. Load Information Policy 

Load information is used as the most fundamental 

elements in the load balancing process, without which load 

balancing decision is impossible. According to this 

algorithm, there are 4 current states of every CPU. That are 

idle, lowly loaded, normal or heavily loaded CPU. 

1. The idle CPU state can be defined as ready queue is 

empty and it is not executing any process and hence 

100 % memory is available. 

 
2. The lowly loaded CPU state can be defined as total 

number of processes (Pi) < (less than) 

LOW_LOAD_THRESHOLD_VALUE (L)* Size of 

Queue (Qs) and more than 75 % memory(MEMfree) is 

available and 80% of total current processes with past 

experience(Ppei) and Nature of the processes are CPU 

bound processes.  

0 0 0

* & 75% & *0.6 &
Qtotal Qtotal Qtotal

i i i

Pi L Qs MEMfree Pi Ppei
  

      

(( 25%) ( ) 75)CPUinstr AND IOinstr MEMinstr  

 

3. The normal loaded CPU state can bedefined as total 

Number of processes (Pi) < (less than) 

NORMAL_LOAD_THRESHOLD_VALUE (N) * 

Size of Queue and 25 % to 75% memory is 

available(MEMfree) and 60% of total current processes 

with past experience(Ppei) and Nature of the processes 

are 50%IO(IOinstr)+Memory(MEMinstr) and 50% CPU 

bound (CPUinstr)processes. 

0 0 0

* & 25% 75% & *0.6 &
Qtotal Qtotal Qtotal

i i i

Pi N Qs MEMfree Pi Ppei
  

     
 

(( 50%) ( ) 50)CPUinstr AND IOinstr MEMinstr    

4. The heavily loaded CPU state can be defined as total 

0 
0&100% 

Qtotal 

i 
Pi                   MEMfree 

 
 

= 



 
Website: ijetms.in Issue:1, Volume No.2, January 2018 

 

42 
 

number of processes > (greater than) 

NORMAL_LOAD_THRESHOLD_VALUE * Size of 

Queue and less than  25% memory is available 

(MEMfree) and 40% of total current processes with past 

processes (Ppei) and Nature of the processes with 

75%IO(IOinstr)+Memory(Meminstr) and 25% CPU 

bound (CPUinstr)processes. 

0 0 0

* & 25% & *0.4 &
Qtotal Qtotal Qtotal

i i i

Pi N Qs MEMfree Pi Ppei
  

      

 

(( 25%) ( ) 75)CPUinstr AND IOinstr MEMinstr  
 

 When hundred percent means all nodes are heavily 

loaded, then the clustered system can be called as 

heavily balanced system. 

 When among the cluster system, heavily loaded 

nodes are 1% to 85% and the remaining are lowly 

loaded or idle or normal processors then system is 

imbalanced and need process migration. 

 When no node is heavily loaded and may be idle 

or lowly loaded or normal loaded, then the system 

is called slightly balanced or slightly imbalanced 

system which is not required any process 

migration. 

This policy is executed by the entire node. 

 

 

5.2. Information Exchange Policies of ARDLCLB 

This information exchange policy depends on how node 

can exchange load information with others. This algorithm 

uses demand load collection policy means it exchange this 

load information when the system is imbalanced and new 

master node demanded the load of each node. This load is 

only collected by the master node, hence communication 

overhead reduces tremendously. 

 

5.3. Process Transfer Policies of ARDLCLB 

The process transfer policy is given below. 

1. When the system is heavily balanced and  all CPU 

in the clusters are heavily loaded then  it executing 

delay of 1000 ms such that all CPUs can execute 

their load to get relief from authority token ring 

circulated among the clusters. 

2. When the system is slightly imbalanced or slightly 

balanced then system is called as normal condition 

3. When the system is completely imbalanced then 

this algorithm change master node and perform 

decision of process migration by the master node 

using centralized approach. 

4. It calculates these Ideal load of each processor and 

translates all processes till ideal load of lowly 

loaded or idle or normally loaded CPU.; 

_ _
_

_ _

Total System load
Ideal load

Total Computenode cluster


 

5. When other node gets order then they can reselect 

processes which can be migrated to destination 

node without changing the format of order packet  

 

5.4. Selection Policies of ARDLCLB 

A selection policy decides which process is selected for 

transfer that means process migration. The chosen process 

could be a new process which has not started, that means, 

new born process or an old process which is already 

starting its execution. If chosen process is the old process 

then it should satisfy following condition. 

1. If (rbt/bt*100>=90) Process is selected for 

migration. 

 

 

 

2 If(remaining burst time / burst time 

*100>=80)&&(actual avarage execution time- wait 

time > burst time) then process is selected for 

migration 

 

 
Re _ _

( *100 80)
_

maining Burst Time
and

Burst Time
  

 

(( _ _ ) _ )? : Pr _Actual Time Wait time Burst time ocess Migration   

3 If( (remaining burst time / burst time 

*100>=60)&&(Total Number of execution 

!=0)&&(turnaround around time – wait time > burst 

time ) && 

((cpu_instr+mem_instr+io_instr)/io_instr>50) then 

process is selected for migration 

 
Re _ _

( *100 60) ( 50)
_

maining Burst Time CPUinstr IOinstr MEMinstr
and and

Burst Time IOinstr

 
 

 

(( _ _ ) _ )TurnArround Time Wait time Burst time and 

Re _ _
*100 90? : Pr _

_

maining Burst Time
ocess Migration

Burst Time




 
Website: ijetms.in Issue:1, Volume No.2, January 2018 

 

43 
 

( 0)? : Pr _TotalExecution ocess Migration  

This selection policy is executed by master node. 

 

5.5. Location Policies of ARPLCPELB 

Location policy of the clusters decides selected processes 

for migration is migrated to end location of CPU. For this 

activity, it selects ideal or lowly loaded CPU to migrate 

processes from heavily loaded CPU . It uses following 

steps. 

1. Select heavy loaded CPU 

2. Select first idle CPU 

a. If found go to 3 else b 

b. Select first low loaded CPU 

i. If found go to step 3 else ii 

ii. Select first normal loaded CPU 

3. Select process for migration to selected CPU 

4. Update load of that CPU 

5. Repeat 3 and 4 till Load of CPU < ideal load of the 

system 

This location policy is executed by master node. 

 

 

6. Parallel Sub Algorithms of 

ARDLCLB) 

This algorithm ARPLCLB is divided in to three parallel 

sub algorithms, that are; 

1. Authority token ring with demand Load collection 

with Past Experience algorithm(ARDLCPE) 

2. Load Collection With Order Packet Creation 

Algorithm (LCOP) 

3. Process Migration with decentralized logic(PMDL) 

 

6.1. Authority Token Ring with demand Load Collection 

Algorithm (ARDLC) 

 

This algorithm uses similar logic regarding authority 

packet but it does not use periodic policy to collect load of 

the each nodes. It uses authority packet to convey current 

status of the node. Hence the system  is balanced or 

imbalanced can be find out using authority packet. 

Whenever one ring is completed, means authority packet 

has load of each node then any idle node or lowly loaded 

node find out whether the system is balanced or imbalanced 

state.  

If the system is in balanced state, then it continues 

authority ring otherwise it pickup authority packet and 

become new master node to demand load from each node.  

For this purpose new master node converts authority 

packet into new master indication packet or load demand 

packet and circulate it to its neighbor using authority ring. 

Hence every node can know about their new master node as 

well as load demand, so as to stops authority ring and ready 

to send their individual load to new master node.   

Here load factor of each node also considers past 

experience as well as also considers nature of the 

instructions. This is explained in following figure: 1 

 

 

 

 

 

 



 
Website: ijetms.in Issue:1, Volume No.2, January 2018 

 

44 
 

 
Figure 1: Authority token Ring with Demand Load collection (ARDLCPE) 

The detailed algorithm of ARDLC is given below: 

Algorithm 5.7: Authority token Ring With Demand Load Collection Algorithm (ARDLC) 

Input   : total_cpu,cupid,next,prev,maser_node. 

Types of Packets : AuthorityPacket. 

Variables During Processing:  

   i, flag=0;  idel=0, low=0,  normal=0,heavy=0. 

Output  :New_master_node_ID 

Constant in the algorithm:  
Qsize, LOW_LOAD_THREASHOLD_VALUE, NORMAL_LOAD_THREASHOLD_VALUE. 

Procedure: 

Step 1: Initiallize all required variables 

  Initiallize Parallel programming With MPI 

  If   start==0    Then 

   Initialize authority Packet; 

  End if 

  prev = cpuid-1;  

  next = cpuid+1; 

  if cpuid == 0  Then   

   prev = total_cpu - 1; 

  End if 

  if cpuid == (total_cpu - 1)     Then 

     next = 0; 

  End if  

Step 2: Repeate following steps 3 to step 5 

Step 3: if  cpuid==master_node  AND   flag==0  Then 

   Initialize authority Packet; 

   Send athority_pkt to next CPU node with message tag tag1  

  flag=1; Go to step 2    

   Else 

  Go to Step 4 

   End if  

Step 4:If   cpuid!=master_node     AND   flag==0   Then 

  Receive pkt from prev CPU node with message tag1  

  If pkt==new master indication packet?   Then 

CPU ID 2 

with 

normal  

states 

 

CPU ID 1 

with Idle  

states 

 

CPU ID 4 

with heavy 

state 

CPU 

ID 5 

new 

Master 

CPU ID 4 

with heavy 

state 

 

CPU 

ID 0 

Old 

Master 

Collection of 

Load by demand 



 
Website: ijetms.in Issue:1, Volume No.2, January 2018 

 

45 
 

  flag=2; 

   If next!=pkt[1]means master node id 

    Send athority_pkt to next CPU node with message tag1 

    Go to step 2 

   End if 

  Else  

   Go to step 4.1 

  End if  

 Else 

  Go to step 5 

 End if  

Step 4.1:If athority_pkt completes one round ?       Then  

  idel=0;low=0;normal=0;heavy=0; 

  for(i=0;i<total_cpu;i++) 

  begin 

   If  load(CPUi)=0?  Then  

    idel++; 

   Else  

   If load(CPUi) < LOW_LOAD_THREASHOLD_VALUE*Qsize   Then   

    low++; 

   Else  

   If load(CPUi) < NORMAL_LOAD_THREASHOLD_VALUE*Qsize  Then 

    normal++;  

   Else   

    heavy++; 

  End for 

  Go to Step 4.2 

Step 4.2: if heavy==total_cpu       

     Then 

  Execute delay(1000); 

    Else 

    If(((idel>0)||(low>0)||(normal>0))&&(heavy>0))      Then  

  if load(cupid)<= LOW_LOAD_THREASHOLD_VALUE*Qsize    Then 

   flag=2; 

  Else 

   Go to step 4.3 

  End if 

    Else  

   flag=0; Go to step 4.3 

    End if  

Step 4.3:If flag ==0   Then 

  Send athority_pkt to next CPU node with message tag tag1  
  Go to step 2 

    Else 

       If flag ==2      

       Then 

    athority_pkt[0]=-1; 

    athority_pkt[1]=cpuid; 

    Send master_indication_pkt to next CPU node with tag1      

    Go to step 2 

       End if 

   End if    

Step 5:if ((cpuid==master_node) AND (flag==1))  Then 

  Receive pkt from prev CPU node with message tag1  
  If pkt==new master indication packet?    

  Then 

   flag=2; 

    If next!=pkt[1]means master node id ?  

    Then 

     Send master_indication_pkt to next CPU node with tag1 

     Go to step 2 

   End if  Else  

   Go to step 5.1 

  End if  Else  



 
Website: ijetms.in Issue:1, Volume No.2, January 2018 

 

46 
 

  Go to step 5.4 

 End if  

Step 5.1:If  athority_pkt completes one round        Then  

  idel=0; 

  low=0; 

  normal=0; 

  heavy=0; 

  for(i=0;i<total_cpu;i++) 

  begin 

   if  load(CPUi)=0?   

   Then  

    idel++; 

   else end if 

   if   load(CPUi) < LOW_LOAD_THREASHOLD_VALUE*Qsize?  

   Then   

    low++; 

   end if 

   if  load(CPUi) < NORMAL_LOAD_THREASHOLD_VALUE*Qsize ? 

   Then 

    normal++;  

   else   

    heavy++; 

   end if 

  End for 

  Go to Step 5.2 

Step 5.2:If  heavy==total_cpu    Then 

  Execute delay(1000); 

    Else 

      If  ((idel>0)||(low>0)||(normal>0))   AND   (heavy>0) ?       

      Then  

  If  load(cupid)<= LOW_LOAD_THREASHOLD_VALUE*Qsize  

  Then  

   flag=2; 

  Else 

   Go to step 5.3 

  End if 

      Else  

   flag=1; 

  Go to step 5.3 

    End if  

 End if 

Step 5.3:If flag ==1   Then 

  Send athority_pkt to next CPU node with message tag tag1  
  Go to step 2 

    Else 

         If flag ==2            Then 

    athority_pkt[0]=-1; 

    athority_pkt[1]=cpuid; 

    Send master_indication_pkt to next CPU node with tag1      

    Go to step 2 

         End if 

   End if  

Step 5.4 : If  flag==2         Then  

   Store  master_node in history; 

   master_node=athority_pkt[1]; 

   Go to Step 6 

      End if   

Step 6 : Call Load Distribution Algorithm With Demand  Load collection Algorithm  

 

6.2. Load Collection with Order Packet  creation (LCOP) 

In previous both algorithms, all nodes collects load of other nodes periodically hence when system is imbalanced then 



 
Website: ijetms.in Issue:1, Volume No.2, January 2018 

 

47 
 

master node not collects load information, it directly creates order packets for process migration.  

But this load information may change due to some duration, hence this algorithm first collect latest new load information 

from each node (Demand of master node) and then decides load distribution and accordingly create order packets. This is 

explained in following figure 2. 

 

 

figure 2. Load Collection With Order Packet (LCOP) 

The detailed algorithm of LCOP is given below: 

Algorithm 5.8: Load Collection With Order Packet Creation Algorithm (LCOP) 

Input   : Load master Packet. 

Types of Packets : LoadPacket,  MasterLoadPacket,OrderPacket 

Types of Array :actual_load, cpu_status, vcpu_status, virtual_load 

Variables During Processing:  

   i,j,k,op,total_load,flag=0; idel=0,low=0, 

    normal=0,heavy=0 

   ,balance_factor, 

CPU ID 

0 

CPU ID 

1 

CPU ID 

2 

CPU ID 

3 

CPU ID 

1 

Master 

CPU ID 

1 

Master 

Create Order Packets 

using Load of each CPU 

Gather 

Load of 

each CPU 

to Master 

Broadcast Order 

packet to each 

CPU 

CPU ID 

0 

CPU ID 

1 

CPU ID 

2 

CPU ID 

3 



 
Website: ijetms.in Issue:1, Volume No.2, January 2018 

 

48 
 

   dest,transfer_flag, 

   src_ldm_addr, src, 

   src_ord_addr,lbf,CPU_state.; 

Output  :Order Packet 

Constant in the algorithm:  

   Qsize,LOW_LOAD_THREASHOLD_VALUE, 

   NORMAL_LOAD_THREASHOLD_VALUE, 

    BALANCE_FACTOR  

Procedure:   

Step 1: Initiallize all required variables 

  i=0;j=0;k=-1;op=0;total_load=0; 

  Initialize load_pkt 

   If cupid==master_node   

  Then  

   Initiallize masterload_pkt  

  End if 

  Gather all node loadpkt from all nodes and store in to masterload_pkt 

  Opl=QSize*total_cpu 

  Allocate opl memory to order_pkt and initialize order packet 

Step 2: 

 //All CPU calculate self state  
 If  load(CPUid)=0?   

 Then  

  CPU_state=0; 

 Else  

 If load(CPUid) < LOW_LOAD_THREASHOLD_VALUE*Qsize  

 Then   

  CPU_state=1; 

 Else  

 If load(CPUid) < NORMAL_LOAD_THREASHOLD_VALUE*Qsize 

 Then 

  CPU_state=2; 

 Else   

  CPU_state=3; 

 End if 

Step 3: if  cpuid==master_node   
   Then 

   Allocate total_cpu memory to actual_load,cpu_status,vcpu_status,virtual_load 

  //Master CPU Calculate actual load of the CPU 

  for(i=0,k=-1;i<lplm;i++) 

  begin 

   If   ( i%(QSize*10(i.e. recordsize))==0)  

   Then          

    k++; 

    actual_load[k]=0; 

    j=0; 

    virtual_load[k]=0; 

   End if 

   If  (load_pkt_master[i]!=-1)   

   Then 

    actual_load[k]++; 

    total_load++; 

    i+=9; 

   Else 

    i=(k+1)*(10*QSize)-1; 

   End if 

  End for 



 
Website: ijetms.in Issue:1, Volume No.2, January 2018 

 

49 
 

  // Master CPU Calculate total status of the CPU 

  for(i=0;i<total_cpu;i++)   

  Begin  

   If(actual_load[i]==0) 

   Then 

    cpu_status[i]=0; 

   Else  

   if(actual_load[i]<LOW_LOAD_THREASHOLD_VALUE *QSize)     Then  

    cpu_status[i]=1; 

   Else  

   If(actual_load[i]<NORMAL_LOAD_THREASHOLD_VALUE*QSize) 

   Then 

    cpu_status[i]=2;  

   Else  

    cpu_status[i]=3; 

  End If  

  vcpu_status[i]=cpu_status[i]; 

 End for 

  Balance_Factor=total_load/total_cpu; 

 Go To step 3.1 

   Else 

  Go to Step 4 

   End if  

Step 3.1: Repeat Steps 3.2 to 3. 

Step 3.2: i=0;heavy=-1; 

   /*Select heavy loaded node */ 

  for(i=0;i<total_cpu;i++) 

  Begin 

   if((cpu_status[i]==3)&&(vcpu_status[i]==3)) 

   Then 

    heavy=i; 

    Go to Step 3.3; 

   End if 

  End for 

      If(heavy==-1) 

  Then  

   Go to Step 4; 

  End if 

Step 3.2:  /*Select idle or low loaded or normal loaded node */ 

   idle=-1; 

  /*Select Idel Node */ 

  for(i=0;i<total_cpu;i++) 

  Begin 

   if(vcpu_status[i]==0) 

   Then 

    idle=i; 

    Go to Step 3.3; 

   End if 

  End for 

  if(idle==-1) 

  Then 

   low=-1; 

   /*Select low Node */ 

   for(i=0;i<total_cpu;i++) 

   Begin 

    If(vcpu_status[i]==1) 

    Then 

     low=i; 

     Go to Step 3.3; 

    End if 

   End for 

   If(low==-1) Then 

    normal=-1; 

    /*Select low Node */ 



 
Website: ijetms.in Issue:1, Volume No.2, January 2018 

 

50 
 

    for(i=0;i<total_cpu;i++) 

    Begin 

     if(vcpu_status[i]==2) 

     Then  

      normal=i; 

      Go to Step 3.3; 

     End If 

    End for 

   End if 

  End if 

  Go to Step 3.3 

Step 3.3: if(((idle==-1)&&(low==-1))&&(normal==-1)) 

   Then 

  Go to Step 4;  

   Else 

    src=heavy; 

  If(idle!=-1)  

  Then  

   dest=idle; 

  Else  

  If(low!=-1) 

  Then 

   dest=low; 

  Else  

   dest=normal; 

  End if 

    End if 

    Go to Step 3.4; 

    End if 

Step 3.4: 

    lbf=(actual_load[src]+actual_load[dest])/2; 

    /* Load Distribution Logic */ 

     src_ldm_addr=src*10*QSize;   src_ord_addr=src* QSize; 

     for(i=src_ldm_addr;i<(src_ldm_addr+10* QSize);i+=10) 

     Begin 

  if(((load_pkt_master[i+2]/load_pkt_master[i+1])*100) > 90) 

  Then 

   order_pkt[src_ord_addr]=dest; 

   src_ord_addr++; 

   virtual_load[dest]++; 

   virtual_load[src]--;  

   transfer_flag++; 

  Else 

  If((((load_pkt_master[i+2]/load_pkt_master[i+1])*100)>80) 

   &&((load_pkt_master[i+9]-load_pkt_master[i+3])      

  >load_pkt_master[i+1])) 

  Then 

   order_pkt[src_ord_addr]=dest; 

   src_ord_addr++; 

   virtual_load[dest]++; 

   virtual_load[src]--; 

   transfer_flag++; 

  Else 

  if(((((load_pkt_master[i+2]/load_pkt_master[i+1])*100)>60) 

   &&((load_pkt_master[i+5]-load_pkt_master[i+3])         

   >load_pkt_master[i+1])) 

    &&(  ((load_pkt_master[i+8]/(load_pkt_master[i+6]     

     +load_pkt_master[i+7]+load_pkt_master[i+8])*100)       

 >50)))   

  Then 

   order_pkt[src_ord_addr]=dest; src_ord_addr++;  

   transfer_flag++; virtual_load[dest]++; 

   virtual_load[src]--; src_ord_addr++; 

  Else 



 
Website: ijetms.in Issue:1, Volume No.2, January 2018 

 

51 
 

   order_pkt[src_ord_addr]=-1; 

   src_ord_addr++; 

  End if 

  if((actual_load[dest]+virtual_load[dest])>=lbf)  

  Then  

   Go to Step 3.5; 

  End if  

  if((virtual_load[src]+actual_load[src])>=(virtual_load[dest]+actual_load[dest])) 

  Then  

   Go to Step 3.5; 

  End if  

   End for 

   Go to Step 3.5 

Step 3.5: /*change the status of each CPU according to its virtual load*/  

     for(i=0;i<total_cpu;i++) 

    Begin 

  if((actual_load[i]+virtual_load)==0)  

  Then  

   vcpu_status[i]=0; 

  Else 

   if((actual_load[i]+virtual_load[i])<LOW_LOAD_THREASHOLD_VALUE*    QSize) 

   Then  

   vcpu_status[i]=1; 

  Else            

  if((actual_load[i]+virtual_load[i]) <NORMAL_LOAD_THREASHOLD_VALUE   

 *QSize)  

  Then  

   vcpu_status[i]=2;  

  Else  

   vcpu_status[i]=3; 

  End if 

    End for 

    Go to Step 3.6; 

Step 3.6: old_dest=dest; 

    If( (  ( (idle==-1)&&(low==-1) )  && (normal==-1) )&&(transfer_flag>0))    

    Then 

  Go to Step 4; 

    End if 

    Go to Step 3;  

Step 4:   

 /* Broad cast order packet to each node*/  

 Wait until all CPU come to this point through Barrier(MPI_COMM_WORLD); 

 Broad cast all order packet to all cpus in the cluster 

Step 5: Call Process Migration with reselection decentralize logic Algorithm 

Note: 1 Step 1, Step 2, Step 4 and Step 5 are executed by all CPU node 

          2 Step 3 and its sub states are only executed by the Master node 

 

6.3. Process Migration using decentralized logic of Algorithm (PMDL) 

Previous both process migration algorithms do not 

implements reselection of process by the heavy loaded 

CPU hence it can migrate maximum time process to lightly 

loaded CPU. This process also execute the state logic as 

well as process reselection logic.  

After accepting order packet, this algorithm divides CPU’s 

in to two groups, that is prcess sender group and process 

receiving group. Usually according to order packet process 

sender group contain heavily loaded processors and process 

receiving group contain lowly loaded or idle or normal 

processors.  

But due to some time duration, some of the heaviely loaded 

processors are changing their state from heaviely loaded 

node to normal or lowly loaded node, then such a node not 



 
Website: ijetms.in Issue:1, Volume No.2, January 2018 

 

52 
 

transfers their load, but they communicates regarding the 

same to respective waiting nodes. This logic is called as a 

state logic.  

This algorithm also execute decentralized process 

reselection logic. According to this logic, when any 

heaviely loaded processor transfers processes to other 

nodes then it (i.e. heavily loaded node) finds current status 

of the process which is selected for the migration. Using 

that status, it finds outs its remaining burst time with the 

help of nature of instructions used in process as well as 

from past experience of the process. If its remaining burst 

time is less than 50 %  then that process is not migrated 

otherwise it is selected for migration. Process migration 

factor is also considered in reselection. 

Figure 3:Process Migration with Decentralized Logic (PCDL) 

 

Figure 3:Process Migration with Decentralized Logic (PCDL) 

 

The detailed algorithm of PMDL is given below: 

 

Algorithm 5.9: Process migration with Decentralized Logic (PMDL) 

Input   : OrderPacket. 

Types of Packets : PCBPacket, ProcessPacket 

Types of Array :migrated_process 

Variables During Processing:  

CPU ID 6 

with heavy 

state 

CPU ID 7 

with Idle  

states 

 

 Idle/low/ Normal CPU 

Follow Order of 

Order Packet 

Heavy Load CPU CPU_state logic 

CPU ID 0 

with heavy 

state 

 

CPU ID 1 

with Idle  

states 

 

Process_pkt 

ProcessContrBlock_pkt 

CPU ID 3 

with heavy 

state 

CPU ID 5 

Master with 

low state 

ProcessContrBlock_pkt 

Process_pkt 

CPU ID 2 

with normal 

states 

 

CPU ID 4 

with heavy 

state 
Process_pkt 

ProcessContrBlock_pkt 

Process_pkt 

ProcessContrBlock_pkt 

Reselection 

Process 

on 

Each 

node 



 
Website: ijetms.in Issue:1, Volume No.2, January 2018 

 

53 
 

   Pcbl,pl,mpl,i,r,pn,  

   total_Migrated_Processes=0, 

   run,tm; 

Output  :Process Migration from old CPU to new CPU 

Constant used: MIGRATION_FACTOR 

Algorithms Used:  
Process_Migration(ProcessId,src_cpu,dest_cpu) 

Reselection_Process() 

Aadnya_Palan() 

Procedure:  Process_Migration (pid,src_cpu,dest_cpu) 

Step 1: Initiallize all required variables 

  Allocate memory ot pcb 

  Initiallize pcb according to pid 

Step 2://Check with source CPU  
 If(cpuid==src_cpu)   

 Then  

  If(pid<0)  

  Then 

   pcb_pkt[1]=-1; 

   /*First send PCB msg*/ 

   Send pcb_pkt to dest_cpu with pcb_msg_ tag 

  Else 

   pl=allot process_contrl_blokof(pid); 

   Allocate Memory to process  

   Load process 

   Send pcb_pkt to dest_cpu with pcb_msg_tag 

   /* send pcb*/ 

   Send process_pkt to dest_cpu with process_msg_tag 

   /*send process*/    
  End if 

 Else 

 If(cpuid==dest_cpu)   

 Then  

  Receive pkt from prev CPU node with pcb_msg_tag 
  pl=lenth mentioned in pcb i.e. pcb_pkt[1]; 

  If(pl>=0) 

  Then  

   Allocate memory to process; 

   Receive pkt from prev CPU node with process_msg_tag 
   Load process 

   Execute process 

  End if 

 End if 

Step 3:Return 

Procedure:  Reselection_Process() 

State 1:if(CPU_State==3)/*Heavy Loaded Processor*/ 

 Then 

  Go to Step 2 

 Else 

  Return 

 End if 

Step 2: mpl=QSize; 

 Allocate memory to migrated_process 

Step 3:Change order of order packet 

  for(i=0;i<QSize;i++) 

  Begin  

   //Initiallize migrated packet 

   If(order_pkt[cpuid*QSize]<0) 

   Then 

    migrated_process[i]=-1; 



 
Website: ijetms.in Issue:1, Volume No.2, January 2018 

 

54 
 

    continue with for loop; 

   End if 

   tm=total_Number_of_migration(i);    

   run=remaining_run_pcb(i); 

   If((run>50)&&(tm<MIGRATION_FACTOR))   

   Then 

    migrated_process[i]=i; 

   Else 

    migrated_process[i]=New_Process_ID(i); 

   End if 

   total_Migrated_Processes++; 

  End for  

Step 4: Return 

Procedure:  Aadnya_Palan() 

Step 1: 

 //Call decentralize reselection process 

 reselection_process(); 

Step 2:If(CPU_State==3) 

 /*Heavy Loaded Processor*/ 

 Then 

  Go to Step 3 

 Else 

  Go to Step 4   

 End If 

Step 3: 

 //Check Order Packet 
 for(i=0;i<QSize;i++) 

 Begin 

  if(order_pkt[cpuid*QSize+i]<0)  

  Then 

   Continue with for loop; 

  End if 

  if(i==migrated_process[i])  

  Then 

   processid=i;  

  Else  

   processid=migrated_process[i]; 

  End if 

  //Call Process Migration Algorithm 

  Process_Migration(processid,rank,order_pkt[cpuid*QSize+i]); 

 End for 

Step 4:// Idel Low or Normal Loaded Processor*/ 

 for(r=0;r<total_cpu;r++)  

 Begin 

  if(r==cupid)   

  Then 

    Continue with for loop; 

  End if 

  for(i=0;i<QSize;i++) 

  Begin 

   If(order_pkt[r*QSize+i]<0)   

   Then 

    Continue with for loop; 

   End if 

   If(order_pkt[r*QSize+i]==cpuid) 

   Then   

    //Call Process Migration Algorithm 
    Process_Migration(i,r,rank); 

   End if 

  End for  

 End For/* Destination Loop*/ 

State 5: Return back to run Authority Ring Periodically load collection algorithm 



 
Website: ijetms.in Issue:1, Volume No.2, January 2018 

 

55 
 

Note: 1 Step 1, Step 2, Step 4 and Step 5 are executed by all CPU node 

2 Step 3 and its sub states are only executed by the Master node 

7 Performance of the Authority Ring with Demand Load Collection Algorithm 

This algorithm gives following result during the 

execution. The main difference between previous 

algorithms and this algorithm is that this algorithm is 

demand driven load collection algorithm. Hence, 

communication overhead is reduced rapidly. This 

algorithm also considers process migration factor and at 

the time of process migration, all heavily loaded CPU 

again reselects processes for migration so cost of 

migration is savedin following table1. 

Table 1: Performance of Algorithm3 (ARDLCLB) 

Iteration 

of Outer 

Loop 

Total Process 

Migration 

Total 

Number of 

Rings 

New 

Master 

Old  

master 

1 2 1 2 0 

2 1 2 2 2 

3 1 13 3 2 

4 1 3 3 3 

5 1 2 0 3 

6 1 3 3 0 

7 1 1 0 3 

Iteration 

of Outer 

Loop 

Total Process 

Migration 

Total 

Number of 

Rings 

New 

Master 

Old  

master 

8 1 4 0 0 

9 2 2 0 0 

10 1 3 2 0 

11 1 2 0 2 

12 1 1 2 0 

13 1 8 1 2 

14 1 1 2 1 

15 1 1 2 2 

16 1 1 0 2 

17 1 2 3 0 

18 1 2 1 3 

19 1 2 1 1 

20 1 1 1 1 

Advantages of Algorithm 3 (ARDLCLB): 

1. It dynamically distributes load and migrates 

processes from heavily loaded processes to idle or 

low loaded or normal loaded CPU successfully. 

2. It gives better performance than algorithm 1 as 

well as algorithm 2 also. 

3. Process selection policy uses past experience for 

process migration. 

4. For process selection policy it uses nature of the 

process also. 

5. Its communication overhead is less as compare to 

Algorithm 1and Algorithm 2 

6. Communication overhead is very less as compared 

to previous algorithms because of the demand 

driven information policy. 

 

8 Overall comparison of ARDLCLB with other algorithms 

The overall performance of ARDLCLB is very good which is shown in following graphs: 



 
Website: ijetms.in Issue:1, Volume No.2, January 2018 

 

56 
 

 

Figure 6.7   Comparison of proposed Algorithms (ARPLCLB, ARPLCPELB, ARDLC) 

The result of the above bar chart is given below: 

 In above chart, it is seen that process migration of first two algorithms is very high, but it is less in algorithm 3. 

 The total rings of algorithm 3 are more as compare to algorithm 1 and algorithm 2. Hence it is proved that system 

is more balanced in algorithm 3. 

 It gives very good results because of  decentralized logic. 

 It also controls communication overhead because of the demand driven policy of the algorithm. 

The result of the above bar chart of figure 6.7 is clearly given below by using bar chart of process migration: 

 

Figure 6.8   Comparison of all proposed algorithms using process migration 

 In above chart, it is seen that process migration of first two algorithms is very high, but it is less in algorithm 3. 

 If process migration reduces, then it again increases the overall performance of the system. 

The result of the above bar chart of figure 6.52 is clearly given below by using bar chart of process migration: 

0

5

10

15

1 2 3 4 5 6 7 8 9 10

C
o

u
n

t

Iteration Outer Loop

Comparison of All Algorithms

Process Migration 1

Number of Rings 1

Process Migration 2

Number of Rings 2

Process Migration3

Number of Rings 3

0

5

10

15

1 3 5 7 9

C
o

u
n

t

Iteration Outer Loop

Comparison of All Algorithms
using process migration

Process 
Migration 1

Process 
Migration 2

Process 
Migration3

0

20

40

60

80

100

1

C
o

m
m

u
n

ic
at

io
n

 o
ve

rh
e

ad
 in

 
%

→

ARP↑LCLB                            ARPLC↑PELB                      
ARD↑LCLB

Communication overhead of the Algorithms



 
Website: ijetms.in Issue:1, Volume No.2, January 2018 

 

57 
 

 

Figure 6.9   Comparison of all proposed algorithms using balance capability 

 On the maximum iteration of the outer loop, the total rings of algorithm 3 are more as compare to algorithm 1 and 

algorithm 2, hence it is proved that system is more balanced in algorithm 3. 

 It gives very good results because of decentralized logic. 

 It also controls communication overhead because of the demand driven policy of the algorithm. 

Now a day, the world has happened to very compact because of communication. Anybody, nevertheless computer or a 

human being, can communicate with each other successfully without considering the distance between them. The 

communication field is rapidly changing. Hence, communication between the two nodes  cannot be avoided, but it can be 

reduced using demand driven policy.  

In future it may be possible that some nodes was dedicated for communication at that time. Also, this algorithm gives very 

good performance. Hence it is stated that this dynamic load balancing algorithm not only increases speed of the cluster, but 

also provides super computing power to the cluster. The conclusion and suggestion of the research study is given in chapter. 

 

 

9. Conclusion 

In order to balance the load uniformly over a cluster 

system, our proposed algorithm has used a mix of 

centralized, decentralized, approach. The performance of 

this algorithm gives better result many a time but due to 

heavy communication overhead and heavy process 

migration, affect the performance. Hence it is proved that 

algorithm 3 “Authority Ring with Demand Load Collection 

Algorithm “ gives very good results as compare to other 

both algorithms. It reduces process migration too. This is 

shown in following bar chart of process migration. 

10. Future Enhancement 

This work is extended to remove all disadvantages of this 

proposed algorithm so as to improve its performance. As 

well as policies used in this algorithm is also improved. In 

future, this work can be extended to develop new dynamic 

load balancing algorithm for SN to make it scalable.  

11. Acknowledgment 

I am sincerely express our thanks to laboratory research 

cell of SIBAR-MCA and SKNCOE for their full support. I 

am very grateful to all friends who have directly and 

indirectly supported to this research work 

 

References 

 

[1] Bernd F reisleben Dieter Hartmann Thilo Kielmann [1997] 
“Parallel Raytracing A Case Study on Partitioning and 
Scheduling on Workstation Clusters” 1997 Thirtieth Annual 
Hawwaii International Conference on System Sciences. 

[2] Blaise Barney, (1994) Livermore Computing, MPI Web 
pages at Argonne National Laboratory http://www-
unix.mcs.anl.gov/mpi "Using MPI", Gropp, Lusk and 
Skjellum. MIT Press 

0

5

10

15

1 2 3 4 5 6 7 8 9 10N
u

m
b

e
r 

o
f 

R
in

gs

Iteration Outer Loop

Comparison of  Balance Ability of an Algorithms

Number of Rings 1

Number of Rings 2

Number of Rings 3



 
Website: ijetms.in Issue:1, Volume No.2, January 2018 

 

58 
 

[3] Erik D. Demaine, Ian Foster,Carl Kesselman, and Marc Snir 
[2001] “Generalized Communicators in the Message 
Passing Interface” 2001 IEEE transactions on parallel and 
distributed systems pages from 610 to 616. 

[4] Hau Yee Sit Kei Shiu Ho Hong Va Leong Robert W. P.Luk 
Lai Kuen Ho [2004] “An Adaptive Clustering Approach to 
Dynamic Load balancing” 2004 IEEE 7th International 
Symposium on Parallel Architectures, Algorithms and 
Networks (ISPAN’04) 

[5] Janhavi B,Sunil Surve ,Sapna Prabhu- 2010  “Comparison 
of load balancing algorithms in a Grid” 2010 International 
Conference on Data Storage and Data Engineering Pages 
from 20 to 23. 

[6] M. Snir, SW. Otto, S. Huss-Lederman, D.W. Walker and J. 
Dongarra,(1996) MPI: The Complete Reference (MIT Press, 
Cambridge, MA, 1995). 828 W. Gropp et al./Parallel 
Computing 22 (1996) 789-828. 

[7] Marta Beltr´an and Antonio Guzm´an [2008] “Designing 

load balancing algorithms capable of dealing with workload 
variability” 2008 International Symposium on Parallel and 
Distributed Computing Pages from 107 to 114. 

[8] Parimah Mohammadpour, Mohsen Sharifi, Ali 
Paikan,[2008] “A Self-Training Algorithm for Load 
Balancing in Cluster Computing”, 2008 IEEE Fourth 
International Conference on Networked Computing and 
Advanced Information Management , Pages from 104 to 
110. 

[9] Paul Werstein, Hailing Situ and Zhiyi Huang [2006] “Load 
Balancing in a Cluster Computer” Proceedings of the 
Seventh International Conference on Parallel and 
Distributed Computing, Applications and Technologies. 

[10] Sharada Patil, Dr Arpita Gopal,[2012], Ms Pratibha 
Mandave “Parallel programming through Message Passing 
Interface to improving performance of clusters ” – 
International Docteral Conference (ISSN 0974-0597) SIOM, 
Wadgoan Budruk in Feb 2013. 

 


